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Abstract

To realize the full potential of machine learning in diverse real-world domains, it is
necessary for model predictions to be readily interpretable and actionable for the
human in the loop. Analysts, who are the users but not the developers of machine
learning models, often do not trust a model because of the lack of transparency in
associating predictions with the underlying data space. To address this problem,
we propose Rivelo, a visual analytics interface that enables analysts to understand
the causes behind predictions of binary classifiers by interactively exploring a set of
instance-level explanations. These explanations are model-agnostic, treating a model
as a black box, and they help analysts in interactively probing the high-dimensional
binary data space for detecting features relevant to predictions. We demonstrate
the utility of the interface with a case study analyzing a random forest model on
the sentiment of Yelp reviews about doctors.
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Chapter 1

Introduction

This thesis is about the intersection of two different fields within the broad discipline
of data science. Those fields are machine learning and visual analytics. Visual
analytics comprehends a set of techniques designed to analyze large amount of data
by means of visual representations and interactive interfaces. The field of machine
learning, instead, regards the design and developing of mathematical models. Those
models are used to train a computer with large amount of data in order to perform
certain tasks. Through machine learning a computer autonomously looks within the
data in order to find patterns. By learning those patterns, the computer will be able
to make predictions of unknown variables where the data is incomplete.

Given this framework computers will often be able to succeed more efficiently
than humans in predicting the future, for example when foreseeing election outcomes,
or in classifying items, like when recognizing handwritten digits in images. Despite
this, computers fail in explaining how and why they performed such tasks. In order
to trust and improve the machine learning model, the human would like to have
total control over the process of performing those tasks. Through user interactions
and visual representations, visual analytics can provide useful insights of machine
learning autonomous decisions.

In this thesis we present a workflow and a visual interface to help domain experts
and machine learning developers explore and understand binary classifiers. The
main motivation is the need to develop methods that permit people to inspect what
decisions a model makes after it has been trained.

While solid statistical methods exist to verify the performance of a model in an
aggregated fashion, typically in terms of accuracy over hold-out data sets, there is a
lack of established methods to help analysts interpret the model over specific sets of
instances.

This kind of activity is crucial in situations in which assessing the semantic
validity of a model is a strong requirement. In some domains where human trust
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in the model is an important aspect (e.g., healthcare, justice, security), verifying
the model exclusively through the lens of statistical accuracy is often not sufficient
[4, 7, 9, 17, 18, 33]. This need is exemplified by the following quote coming from
the recent DARPA XAI program: “the effectiveness of these systems is limited by
the machines current inability to explain their decisions and actions to human users
[. . . ] it is essential to understand, appropriately trust, and effectively manage an
emerging generation of artificially intelligent machine partners” [10].

Furthermore, being able to inspect a model and observe its decisions over a data
set has the potential to help analysts better understand the data and ultimately the
phenomenon it describes.

Unfortunately, the existing statistical procedures used for model validation do
not communicate this type of information and no established methodology exists.

In practice, this problem is often addressed using one or more of the following
strategies: (1) build a more interpretable model in the first place even if it reduces
performance (typically decision trees or logistic regression); (2) calculate the impor-
tance of the features used by a model to get a sense of how it makes decisions; (3)
verify how the model behaves (that is, what output it generates) when fed with a
known set of relevant cases one wants to test.

All of these solutions however have major shortcomings. Building more inter-
pretable models is often not possible unless one is ready to accept relevant reductions
in model performance. Furthermore, and probably less obvious, many models that
are considered interpretable can still generate complicated structures that are by no
means easy to inspect and interpret by a human being (e.g., decision trees with a
large set of nodes) [9]. Methods that rely on calculation of feature importance, e.g.,
weights of a linear classifier, report only on the global importance of the features
and does not tell much about how the classifier makes decisions in particular cases.
Finally, manual inspection of specific cases works only with a very small set of data
items and does not assure a more holistic analysis of the model.

To address all of these issues we propose a solution that provides the following
benefits:

1. Requires only to be able to observe the input/output behavior of a model and
as such it can be applied to any existing model without having access to its
internal structure.

2. Captures decisions and feature importance at a local level, that is, at the level
of single instances, while enabling the user to obtain an holistic view of the
model.

3. It can be used by domain experts with little knowledge of machine learning.
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The solution we propose leverages instance-level explanations: techniques that
compute feature importance locally, for a single data item at a time. For instance,
in a text classifier such techniques produce the set of words the classifier uses to
make a decisions for a specific document. The explanations are then processed
and aggregated to generate an interactive workflow that enables the inspection and
understanding of the model both locally and globally.

In Chapter 6, we will describe the workflow (Figure 6.1) in detail which consists
of the following steps. The system generates one explanation for each data item
contained in the data set and creates a list of features ranked according to how
frequently they appear in the explanations. Once the explanations and the ranked
list are generated, the user can interact with the results as follows: (1) the user selects
one or more features to focus on specific decisions made with them; (2) the system
displays the data items explained by the selected features together with information
about their labels and correctness; (3) the user inspects them and selects specific
instances to compare in more detail; (4) the system provides a visual representation
of the descriptors / vectors that represent the selected data items (e.g., words used
as descriptors in a document collection) and permits to visually compare them; (5)
the user can select one or more of the descriptors / vectors to get access to the raw
data if necessary (e.g., the actual text of a document).

In the following chapters we first provide background information on visual
analytics and other related work, we then describe the methods used to generate the
explanations followed by a more detailed description of the visual user interface and
interactions developed to realize the workflow. Then, we provide a small use case to
show how the tool works in practice. Furthermore we also describe an indicative user
study to show some evidence that different users were actually able to extract useful
information from our tool. Finally we conclude with information on the existing
limitations and how we intend to extend the work in the future.
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Chapter 2

Visual Analytics

In order to better understand our work, it is useful to give a brief overview of
what visual analytics is and how it works. Visual analytics is a multi-disciplinary
field that relates to the designing of tools and techniques which help explore and
comprehend large data-sets. Those techniques mostly alternate automated analysis
and interactive visualization to help the user solve problems with the available data.
Such problems regards tasks like decision making and reasoning through visual
interaction over remarkable amounts of information, which would be overwhelming
for the user otherwise. Mostly this implies detecting unexpected and meaningful
anomalies and patterns within the data from on demand visualization of a model
results.

2.1 The Visual Analytics Process

One of the oldest paper on the topic is from Shneiderman (1996) [28]. Shneiderman
foresees the evolution of information visualization methods in the following decades
by already making a distinction between two approaches of dealing with data. The
first relates to data management of relational databases, where everything is already
structured and the aim is the efficiency and security of the safe-keeping of data.
The second is relative to the search for patterns in large unstructured ever-growing
collection of data, today called big data. In the second case as the large amount
of data increases, it is more difficult to extract useful information. Therefore, in
order to successfully interact with data, Shneiderman suggests the need for new
methods related to the human perceptual ability. A user is able in fact to perceive
and understand large amount of information through images rather than with plain
text. Given all of this, Shneiderman describes the following scheme to apply when
dealing with interactive visualization of large amount of data:
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“Overview first, zoom and filter, then details-on-demand.”

Shneiderman calls this the information visualization mantra as the more this
process is repeated, the more refined the extracted information will be. Overview
refers to get an overview of the entire data-set. Zoom means to gather data items of
interest and filter to leave out the ones not of interest. Then details-on-demand
is the last crucial step where the user inspects the data items of interest by retrieving
more information about them to detect something useful.
Since Shneiderman provided this approach in 1996, many other refinements have been
added to the process. As data get visualized and processed with newer techniques,
also new technologies provide extreme dynamic interaction with the visualizations.
All of those techniques and technologies today are part of visual analytics.
One of the first definition for visual analytics is from a paper from the Pacific
National Northwest Laboratory (PNNL) of 2006. Thomas and Cook [30] report
the description of this new field given by the National Visualization and Analytics
Center (NVAC). Such institution was established by the Department of Homeland
Security (DHS) in order to process large amount of data and reduce the risk of
terrorism in the United States. NVAC created a panel of about 40 researchers which
conveyed the need of a new technology to prevent and control emergencies: visual
analytics. The panel of researchers defined visual analytics: “the science of analytical
reasoning facilitated by interactive visual interfaces”. This science is related to four
sets of techniques:

1. analytical reasoning techniques aiming at planning and decision making;

2. visual representations and interaction techniques which exploit the
human ability of understanding large amount of data through images;

3. data representations and transformation techniques which alter the
raw data so that can be used by the precedent techniques sets 1 and 2;

4. techniques for sharing and communicate the obtained analytical results.

Visual analytics is about the coexistence of those 4 sets of techniques in new software
tools able to help the user in solving a problem.

2.2 Application of Visual Analytics

In order to better understand what visual analytics can do, we will see now its
application in tools. A great number of different tools already exists, differing by
domain data used, way of processing data and visualization used. What really differs
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from tool to tool is the problem they were made to solve. We can see in Figure 2.1
some pictures of tools taken from the book Visualization Analysis and Design by
Tamara Muzner [21]. We will see now what those tool are able to do:

(a) Scagnostics [35] is used for understanding better scatter plots matrices (SPLOM).
The tool shows a SPLOM visualization made to understand better another
SPLOM visualization of actual data. Scagnostics shows a data item for each
original scatter plot and a single Scagnostics scatter plot is used to compare
scatter-plot attributes like convex layout vs sparse layout.

(b) VisDB [12] shows an intricate visualization that summarize the data items in
a large database. The visualization will color to show how query impacts the
database regions.

(c) Hierarchical Clustering Explorer (HCE) [26, 27] is used by bioligists to under-
stand similarities among a great number of genes under different experiment
condition using a hierarchical clustering.

(d) PivotGraph [34] can summarize in a single graph a larger network, where group
of nodes and links are merged in single nodes and links of the visualization.
This way it is possible to understand quickly the network topology.

(e) InterRing [36] uses a visualization with a radial layout in order to explore data
with tree structure.

(f) Constellation [20] is made for browsing multilevel linguistic networks. Those
networks are made to link a single word to its completely different meanings
(e.g. “bank” with “financial bank” and “river bank”). It is in fact using a
visualization with a graph connecting words on different linguistic layers.

We will know go through Hierarchical Clustering Explorer (HCE) interface in detail
to see an example more accurately.

2.2.1 Hierarchical Clustering Explorer (HCE)

HCE was designed in 2002 by Seo and Shneiderman [26, 27], who we already met
introducing visual analytics in Section 2.1. The tool aims at helping bioinformatic
researchers at exploring DNA data similarities. The data displayed in the tool comes
from DNA microarrays, small chips made of glass on which a robotic device has
printed DNA samples in a 2-dimensional array disposition. The sample refers to
different genes with various experiment conditions for which the gene expression level
value was measured. Using this value, bioinformatic researchers compute similarities
among different genes. Those similarities measures are used for hierarchical clustering,



8 2. Visual Analytics

Figure 2.1. Six examples of visual analytics tools interfaces are reported in this picture.
Different visualizations took place depending on the domain data and the problem
the tools were made to solve. (a) Scagnostics [35]. (b) VisDB [12]. (c) Hierarchical
Clustering Explorer [26, 27]. (d) PivotGraph [34]. (e) InterRing [36]. (f) Constellation
[20].
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represented by a dendogram. A dendogram is a diagram with a tree structure that
branch together genes, clusters and sub-clusters given the similarity measures.
Unfortunately, with this enormous amount of data, displaying the dendogram in a
static view is not possible, since it would not even fit in a computer display and the
intricate visualization would overwhelm the user. Therefore the researchers need
HCE, a visual analytics tool for exploring their research experiment data in order to
detect important relations among genes.
The interface of HCE is depicted in Figure 2.2 and it is split in two panels. We

will call the top panel overview panel and the bottom panel the zoom panel. The
overview panel is showing a view over the entire data-set, depicted as a mosaic
clustered by a dendogram. The zoom panel shows instead the mosaic zoomed on a
selected cluster, highlighted in yellow.
The overview panel can be zoomed in and out in search of an interesting cluster. The
dendogram divides the genes on the x-axis in clusters given a similarity parameter
threshold. On the bottom part of the overview panel the colored mosaic shows for
each gene the gene expression level for different experiment conditions. Each gene is
linked to a vertical stripe of tiles of the mosaic. Each tile of the same vertical stripe
is relative to a different experimental condition where the color resemble the gene
expression level from green to red. Clusters are visible in the mosaic thanks to white
lines diving the vertical stripes (genes) into groups. The user can select one of those
cluster which will appear in the zoom panel.
The zoom panel shows the same mosaic of the overview panel zoomed on the selected
cluster. This way the user can read gene names on the top x-axis and the experimental
conditions on the left y-axis. Experimental conditions are also clustered here by a
different dendogram.
Thanks to this tool it is possible for a bionformatic researcher to practically explore
the DNA-microarrays data with the work-flow defined by Shneiderman’s information
visualization mantra seen in Section 2.1. The researcher in fact will be overviewing
the entire data-set and the clustering, zooming and filtering the clusters by
changing the similarity parameter threshold, requesting on-demand visualization
of a cluster details. This way the researcher can get an understanding of genes
similarities on different experiment condition.
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Figure 2.2. We show here an example of application of visual analytics: the interface
of Hierarchical Clustering Explorer (HCE). The overview panel on the top shows an
outline of the clustering of genes. The genes are represented in the colored mosaic by
vertical stripes linked to leaves of the dendogram. The vertical stripes keep record of all
the different experiment conditions for the same gene. Each tuple (gene - experiment
condition) is then represented by a tile of the mosaic with color linked to the gene
expression level of the relative sample. Genes are divided in clusters by white separations
between vertical stripes. The user can select one of those clusters which will be highlighted
in yellow and showed in the below zoomed panel. In this panel it is possible to read gene
names and experiment conditions for the samples of the selected cluster by enlarging
the mosaic.
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Chapter 3

Related Work

We have seen how visual analytics works for a broad variety of applications. We will
see now tools that are specifically made to interpret machine learning models.

Different visual analytics techniques and tools have been developed to inspect the
decision-making process of machine learning models and several authors advocated
for the need to make models more interpretable [14]. In this chapter, we describe
the previous work that is most relevant to our proposed model explanation process.

Those interactive visualizations depend on the required specifications of the
explained model. Such specifications can be broad or precise and are depending on
the kind of algorithm, input data, and classification used. In each of the related
works, we will focus on the visual representation used to explain the model. This
representation will depend from other properties of the tool.

Given this framework we made the following categories to distinguish group of
tools related to machine learning. Since categories might intersect, the idea is not to
give each tool a unique association, but we want instead to highlight their important
characteristics. This way we can give a complete overview of all the previous work
on the topic.

1. Visualizing Multi-classification Results:
Many machine learning models are designed to classify items not just over two
categories, but over multiple categories. In these cases, tools comprehend a
visualization which supports all those multiple classification outcomes.

2. Exploring Predicted Instances:
Another approach is to compare and analyze instances in their feature space.
Those kind of visualizations help the user to compare instances by the feature
relations and predicted labels, while keeping track of model performance.

3. Use of Feature Importance:
An important method in detecting model behaviours is measuring the feature
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importance. By visualizing and highlighting features by means of this measure,
some tools suggest the user which features are most important for the trained
classifier.

4. Model Dependency in Visualizations:
A big differences among tools regard their flexibility towards the different kind
of machine learning algorithms. By using a white-box approach, some tools
are tailored exactly for a specific algorithm to show in detail what happens
within the model. Other tools, like ours, use instead a black-box approach,
which make them more flexible to explain insights from many different models.

5. Human Interaction Involvement:
Another group of existing tool uses the user interaction in an active manner,
so that the human is involved in the machine learning process. The user will
continuously provide feedback by interacting with a visual interface and the ma-
chine learning model will comprehend the human decision in the classification
process.

Each of these categories and the relative examples will be discussed in the next
sections.

3.1 Visualizing Multi-classification Results

Different techniques are specialized with visualization for multi-classification models.
An example is the method described by Rauber et al. [23] explaining multi-layer
perceptron networks by creating patterns of instances through dimensionality re-
duction (Figure 3.1). Those patterns are useful to distinguish instances belonging
to different classes. This technique would not be a valid replacement for Rivelo
when handling multi-classification models because it only works with certain types
of network models. Another tool able to explain multiclass model is called Squares
[24]. The related paper shows an example with hand-written digit recognition model.
However by using the aggregated representation of predicted instances, Squares is
able to work with different kind of models as well. As shown in Figure 3.2, the
predicted instances are depicted as cells in multiple histograms, one for each class.
By interacting with the interface, the user is able to inspect a class performance by
looking at a single histogram and a instance misclassification by looking at a single
cell within an histogram.
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Figure 3.1. In the figure the dimensionality reduction designed by Rauber et al. [23] to
visualize multi-classification results from a neural network model. In this case the results
regard image classifications. Different clusters in the visualization have the same color
and match with one of the categories of the image classification.
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Figure 3.2. We display in this figure Squares [24], a visual analytics tool made for
analyzing multi-classification models. The visualization depicts the predictions for
digits-recognition from two models, one for each row of histograms. Each histogram on
the same row has a distinctive color relative to the prediction for a single class, in this
case one of the 9 digits.

3.2 Exploring Predicted Instances

Compared to tools for multi-classification, the ones for binary classification deal with
less complex output, thus making it possible for visualizations to focus primarily
on analyzing the model. For example ModelTracker [1] shows predicted instances
in a more detailed interactive visualization than Squares. As shown in Figure 3.3,
the user is able to explore the instance relations, visually represented in cells in the
feature space, in order to understand the errors. Common performance statistics
are displayed as well. Furthermore ModelTracker [1] visualizes predictions and
their correctness and how these change when some model parameters are updated.
Similarly, MLCube Explorer [11] (Figure 3.4) helps users compare model outcomes
over various subsets and across multiple models with a data cube analysis type of
approach. One main difference between these methods and the one we propose
is that we do not base our analysis exclusively on model output, but also use the
intermediary representation provided by explanations. This enables us to derive
more specific information about how a model makes some decisions, and go beyond
exploring what decisions it makes.

3.3 Use of Feature Importance

Another approach used to explain models is related to feature engineering. FeatureIn-
sight [6] (Figure 3.5) leverages both feature importance and human interaction to



3.4 Model Dependency in Visualizations 15

Figure 3.3. The above figure depicts the interface of ModelTracker [1]. In the top panel
information regarding predicted instances is represented by the position and color of
those cells. Given a cell, its x-position and y-position encode respectively the prediction
value and which set the instance belongs to (train or test). The color represents instead
the ground truth label. By clicking on a single cell, ModelTracker will highlight neighbour
instances in the feature space. A vertical line represents the interactive threshold. As
the user changes the threshold, the panel below shows how the model performance is
affected through common statistics.

explain model decisions using feature ideation. This technique consists of searching
for new features for a machine learning model to improve its performance. For
complex text data, machine learning requires experts to find the set of features by
selection and combination of the existing ones. In FeautureInsight the user selects
a set of features, while a document classifier is trained online. FeatureInsight uses
feature semantic and rank to help the user selection. Rivelo on the other hand ranks
features only on the basis of the explanations computed. On a document classifier,
Rivelo’s feature ranking should match the semantic behind the words. When it
doesn’t, the user is able to spot the anomaly and inspect it by interacting with the
tool.

3.4 Model Dependency in Visualizations

Many of the explanation methods investigated by researchers employ a white-box
approach, that is, they aim at visualizing the model by creating representations of
the internal structures of the models. For instance, logistic regression is often used
to create a transparent weighting of the features and visualization systems have
been developed to visualize decisions trees [31] and neural networks [16, 23]. These
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Figure 3.4. MLCube Explorer [11] interface is designed for analysis of data cubes, that
is data array with 3 dimensions. The interface is made to compare two models over
different subsets of instances. Subsets are defined by constraints on the features value.
The aim is to understand which model is better for different subsets of instances in
the discrete feature space. In the figure each subset is on a different row. Subsets are
grouped in larger rows by the common constrained feature. For each subset a summary
with some aggregated statistics is shown regarding the relative instances. By fixing
the value of the other features on the columns, MLCube Explorer shows on the right a
correlation matrix. This matrix depicts in colored circles which model is better for each
pair of feature constraints.
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Figure 3.5. FeatureInsight [6] helps the user in searching for new features (words and
phrases) for a binary document classifier. The interface is divided in 5 panels: (A) where
the user can add new features; (B) where you can select the class for which you want to
add new features; (C) where recurrent terms from misclassfied documents are suggested;
(D) where recurrent terms from correctly classified documents are suggested; (E) where
other features similar to the new added are shown. The user will decide which features
to add by reading the hints from the panels (C), (D) and (E). Then an online retraining
will take place to show any improvement or worsening of the model performance.
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Figure 3.6. The image centric nature of CNNVis [16] visualization makes possible to
understand how a neural networks classifies image data. In the visualization the user can
identify each perceptron role in the classification. This is possible because for image data
the tool can visualize shapes and colors to quickly show the user what each perceptron
is doing.

methods however can only be applied to specific models and, as such, suffer from
limited flexibility.

For example, CNNVis [16] (Figure 3.6) is designed to work only with neural
networks. The tool uses a network visualization to explain the model which is
especially desired for neural networks. This visualization is able to illustrate the
decision making process of single neurons and how those decisions are linked. CNNVis
differs from Rivelo because it manage image data instead of binary data. Due to
the image centric nature of the visualization CNNVis cannot easily be applied to
other data types. One solution developed in the past is the idea of training a more
interpretable model out of an existing complex model, e.g., inferring rules from a
neural network [8].

Another option is to treat the model as a black-box by exclusively inferring
from its input-output relations. This more recent solution is the idea of generating
local explanations that are able to explain how a model makes a decision for single
instances of a data set [25, 13, 15]. These works are excellent solutions to the
problem of investigating single instances but there are no established methods to go
from single instances back to a global view of the model. This is precisely what our
work tries to achieve by using instance-level explanations and embedding them in
an interactive system that enables their navigation.
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Figure 3.7. The depicted interface from Prospector [15] shows for each bar a different
feature of a chosen instance of a machine learning model with numerical data. The user
can use the bars to change the features value and see how the prediction changes. This
way the user can understand the feature importance of the model for that given instance.

Therefore Martens and Provost’s [19] method, used in our tool, is not the
only approach for creating explanations from black-box machine learning models.
However, it is optimized for sparse binary input data. Prospector [15] (Figure 3.7) on
the other hand works with numerical input data. Explanation generation is not the
primary purpose of this system, but it can be achieved by repeated application of its
proposed procedure of assessing localized feature importance. LIME [25] describes
a method of explanation generation utilizing a proxy model. That is its method
first samples the neighborhood of the instance to be explained. Then a secondary
model is trained solely on those sampled instances. This proxy model is chosen to be
directly interpretable thus its global feature importance can be used as explanation
for the analyzed instance. Those techniques would be valid replacements for the
explanation creation method used in Rivelo when dealing with numerical data.

3.5 Human Interaction Involvement

Somewhat related to our work are interactive machine learning solutions in which
the output of the model is visualized to allow the user to give feedback to the model
and improve its decisions [2, 3, 29].

For example ReGroup [3] and CueFlik [2] are able to involve the user in the
decision making process of the model. ReGroup shows how a model aggregates nodes
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within a social network. The user starts by creating groups and then inspects the
consequent recommendations of new members provided by the model. CueFlik on the
other hand uses a model to classify images starting from a set of examples given by
the user. Tam et al. [29] leverages human interaction for creating decision trees with
the help of domain knowledge. Compared to greedy automatically created decision
trees, case studies show that manual trees performed by the user return a better
performance. In all three of these previous cases the user is directly responsible of
the classification performance through interaction. This way the final classification
improves and the user becomes more confident with the model. The goal of our work
however is to introduce methods and tools that can be easily integrated in existing
settings and workflows adopted by domain experts, and as such does not rely on the
complex modifications necessary to include explicit user feedback in the process.
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Chapter 4

Instance-Level Explanations

An instance level explanation consists of a set of features that are considered the
most responsible for the prediction of an instance, i.e., the smallest set of features
which have to be changed in the instance’s binary vector to alter the predicted
label. We used a variant of the instance-level explanation algorithm designed by
Martens and Provost [19] for document classification. We will describe first the
original algorithm by Martens and Provost [19], then we will see how and why our
version differs.

4.1 Martens and Provost’s Method

The overall process of the explanation generation is illustrated in Figure 4.1. Rivelo
computes an explanation for each instance using the input-output relationships of a
black-box model.

The technique works by creating artificial instances derived from observed values
in order to examine the influence of the features to the output. It assumes binary
feature vectors. Starting with the original binary vector x and its predicted label,
the algorithm “removes” features from the vector creating an artificial instance x− e.
Features are added to the vector of “removed” features e until the predicted label of
x− e is different than the one of x. The set E = {k | ek = 1} of “removed” features
is then called an explanation of the original vector x.

Removing in this context indicates the change of a feature that is present to not
being present. We chose the term “removing” because it is particularly intuitive
for sparse binary data. The technique works only for sparse binary data where
it is possible to assign prediction responsibility to components relative to present
features. This is the case for bag of words in document classifiers, but also for any
kind of data where instances represent a set of items, like medications in the medical
domain and products bought or liked in market basket analysis. Bag of words can
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Figure 4.1. Illustrating the process of explanation computation. x is an observed instance
vector. We treat the ML model as function f that maps a vector to a prediction score.
The explanation algorithm tries to find the shortest vector e for which f(x− e) is below
the threshold. This vector e serves as an explanation for the prediction.

also contain n-grams where features represent expressions of multiple terms that can
be used to explain a prediction. In the case instead of not sparse binary data, the
components most responsible for a prediction are given by not present features. It is
possible to select those features while building explanations by providing the tool
with the binary complement data and model.

The machine learning model is assumed to deterministically compute a prediction
score f(x) between 0 and 1 for a given input vector x. The predicted label is then
computed by comparing this score to a given optimal threshold. This threshold is
computed on the training data minimizing the number of misclassifications.

The process of removing features from a vector is the core of the explanation
algorithm. The algorithm consists of successively removing the feature with the
highest impact on the prediction score towards the threshold until the label changes.
This results in the most compact explanation for a given instance. If the prediction
score cannot be changed towards the threshold by removing a feature the instance is
discarded without outputting an explanation. Despite this in most cases it is always
possible to remove a feature that changes the prediction towards the threshold.
In these cases the algorithm keeps removing features until either one of the three
conditions is met: (i) there a no features left to remove in the vector; (ii) the
explanation set is finally able to change prediction to the original instance vector;
(iii) the candidate explanation reached already a maximum size. The last condition is
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needed because explanations are useless when they are too long to read. Explanations
that are long are not intuitively interpretable by a user thus they are discarded in
this original version of the algorithm.

4.2 Our Implementation

Martens and Provost [19] designed an algorithm which we first implemented in Python
in its original version. This original algorithm had strict rules for instances that
would not smoothly achieve an explanation. Therefore we added some extra steps
to the original version aiming at relaxing this rules in order to reduce the number of
discarded instances without losing the compactness property of the explanations. We
needed more explained instances in order to achieve a more complete visualization.

The original algorithm was discarding instances when it was not possible to find
a feature able to change the prediction score towards the threshold. To increase the
number of explained instances, in order to provide a fuller picture of the model’s
decisions in our visualization, we relax this restriction by removing random features
with no impact on the prediction score. Oftentimes, after removing some features
randomly the prediction score starts changing again leading to an explanation for
this otherwise discarded instance. However, removing features with no impact on
the prediction score violates the compactness property of the resulting explanation.
In order to restore this property we add a post-processing step that re-adds features
that do not contribute to a favorable prediction score change. This process is time
consuming requiring us to pre-compute explanations offline.

Another difference of our approach to the algorithm by Martens and Provost [19]
is the handling of explanations that grow too long. The original algorithm was
also discarding instances when the explanations was growing more than a fixed size,
usually 5 features. As we are adding random features, in some cases the explanation
might grow too long before the compacting step. In order to not discard explanations
that are only temporarily too long we perform the length check after this step.

To summarize we report here all those extra steps which are the differences with
Martens and Provost’s method [19].

1. Sometimes we also add features to the explanation that once removed from the
vector do not cause any change in the scorer function. Those score irrelevant
features do not represents an improvement in building the explanation, but
they allow us to not stop the search. By not stopping the search we can avoid
discarding some instances from their explanation computation.

2. While looking for features to add to the explanation set, we do not stop if the
explanation set reaches a maximum size. Our search for features terminates
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only when either we removed all features from the vector or the removal of
any feature will cause a worsening in the scorer function.

3. Because of the presence of explanations that are too long and explanations
that contain score irrelevant features, we need to post-process all computed
explanations, in order to reduce their size if possible. Post-processing consists
in disregarding explanations longer than 5 after an attempt of shortening them.

To understand how all of this works in practice, in the following pages we will go
through the details of the actual algorithm.
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Chapter 5

The Algorithm

In order to describe more in detail the algorithm of Rivelo, we need first a more
strict definition of instance-level explanation.

Definition 5.0.1. Instance-Level Explanation
Given a machine learning model with scorer function f(x) = p ∈ [0, 1] and an
instance x : {xi ∈ {0, 1} i = 1, .., n}, we can denote the set D = {i : xi = 1} that
represents the set of features of x. We state that the x has class c because f(x) ≥ l

where l ∈ [0, 1] is the threshold of model.
We define E : {i : ei = 1} where e : {ei ∈ {0, 1} i = 1, .., n} is the binary vector
representing the explanation. E is an explanation of the instance x if:

• E ⊆ D

• f(x− e) < l

Given any machine learning model able to classify binary vectors x with a
prediction p with the following scorer function f : f(x) = p, p ∈ [0, 1], {xi ∈
{0, 1} i = 1, .., n} we are able to compute an explanation for each instance. For
this reason we have a model-independent technique that allows to deal with models
as black boxes. The only requirement is to use as input only binary data, but this
means we can compute explanations for document classification models. This kind of
model converts text data into binary data treating documents as bag of words, after
removing stop-words and stemming all remaining terms. Especially in document
classification models, the number of features is high but thanks to an hill-climbing
approach we are able to compute explanations even for models with thousands of
features. This hill-climbing approach is present in our alternative version of the
algorithm by Martens and Provost [19].
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5.1 The Explanation Computation

Before displaying the algorithm we give more details about the prediction of the
classification. Given x instance of the data-set:

D = {i : xi = 1}

xAi =

1 i ∈ A

0 i /∈ A

f(xA) = p ∈ [0, 1]

0 ≤ t ≤ 1

CM (D) =

c1 p ≥ t

c2 p ≤ t

We need to point out that not always is possible to find a small explanation E

that changes the prediction for the instance x. As E increases in size, it loses its
capability to explain properly the prediction. It becomes completely useless when
the cardinality of E is equal to

∑
i xi as it contains all the possible features present

in the binary vector. For this reason we fix zmax as the maximum size of E after
which we give up and we move to the next instance in the data-set.
The algorithm works on a data-set DS of P instances described as follows:

DS = {xp p = 1, .., P}

where for each xp : CM (Dp) ∈ {c1, c2} we try to compute a different explanation E.
The pseudo-code for the explanation computation is provided at Algorithm 1. Keep
in mind that the actual implementation is a bit different since we take advantage
of the representations of sets in binary vectors so that we are able to compute
prediction changes in an aggregated manner. It follows now a description of the
steps in the procedure.

1. For each instance x of DS, we iter over all the elements in the set D.

2. In the beginning our set that will later represent the explanation is empty:
E0 = {∅}

3. For each element i in the current set D/E0 we compute the prediction change
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∆if . We do this by removing from the current set the element i and subtracting
the new prediction value on the new set with the old one on the current set.

4. After all ∆if are computed, depending on which was the originally predicted
class c, we pick the element i∗ where the difference is more relevant. That is:

(a) the more negative ∆if if c = c1

(b) the more positive ∆if if c = c2

If there is no suitable ∆if to pick, we exit the while cycle. That is when:

(a) ∆if > 0 ∀ i if c = c1

(b) ∆if < 0 ∀ i if c = c2

5. If we could find a suitable ∆i∗f , we check if it is relative to a null prediction
change (∆i∗f = 0). If it is not the case we just go directly to point 6. Otherwise,
we retrieve all i relative to null prediction changes and we pick a random one
among them. We set this random picked i to our new i∗.

6. We store i∗ in the originally empty set E0.

7. We compute the class ĉ of D/E0 by comparing the new prediction value with
a fixed threshold t: CM (D/E0) = ĉ.

8. If the class already changed, ĉ 6= c, it means we have the explanation E = E0

and we exit the while cycle. Otherwise, if ĉ = c, we start again from point 3
trying to remove another element from the current set D/E0. This procedure
will iter until either there are no elements left to remove or the condition c 6= ĉ

is met.

9. When we exit the while cycle we return the set E = Ek
0 .

This way we are returning sets that do not always return a change of class. These
faulty explanations are relative to two cases:

• the current set D/E0 is empty;

• no suitable element left to remove: by removing any of the element left, the
prediction change would have taken us even further from the threshold t value.

The algorithm was implemented to store faulty explanation anyway in order to keep
record of the faulty cases during the development of the software. Those faulty cases
are not input of the postprocess computation we will see in Section 5.2.

This algorithm is done in such a way that sometimes for some k̂ we add to E
features i such that ∆k̂

i f = 0. Those features do not represents an improvement in
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our research for E but they allow us to not stop the search. Eventually for k > k̂

we will find ∆k
i f 6= 0 such that we are pointed again in the right direction for a

change of class. For the same reason we do not bound the size for explanation at
this moment, leaving them grow until either the class change or there is no element
to remove left. In the next Section 5.2 we will describe a second algorithm able to
postprocess all computed too long and not-faulty explanations, in order to reduce
their size if possible.

5.2 The Postprocessing Computation

In this part we try to reduce the size of each computed explanation E. For each
E, we check if there is any feature in the set that, if removed from E, does not
compromise the change of class. As explained before, we know that such features
exist because, when we built previously the explanations, we also added the ones
that didn’t involve any change in the scorer function. Basically this computation
resembles the process of going backwards compare to how we built the explanations.
In practice we are trying to re-add elements in the set E to the set D/E and see
if the change of class (ĉ 6= c) is still guaranteed. The Algorithm 2 of explanation
postprocessing describes the procedure taken for each not faulty explanation E and
it comprehends the following steps:

1. The algorithm takes as input an instance D, its predicted class c and its
computed explanation E.

2. We set the set E0 = E and we enter the while cycle.

3. For each element j of the set E0, we compute the prediction change ∆jf by
subtracting the prediction value on the new set (D/E0) ∪ {j} = D/(E0/{j})
with the old one on the current set D/E0.

4. Depending on the original class, we are picking the more suitable j∗. That is
the j which keeps or takes us as further as possible from the threshold t. Such
an element is usually linked to the less relevant feature in the explanation. To
do this we perform the following:

(a) If c = c1 : j∗ | ∆j∗f ≤ ∆jf ∀ j

(b) If c = c2 : j∗ | ∆j∗f ≥ ∆jf ∀ j

5. At this point there are 2 cases:

(a) If CM (D/(E0/{j∗})) = ĉ 6= c : removing j∗ from the E0 did not com-
promise the change of class. We can therefore remove j∗ from E0
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(E0 = E0/{j∗}) and go back to point 3 and try to reduce even more the
size of the explanation.

(b) If CM (D/(E0/{j∗})) = ĉ = c : removing j∗ from the E0 compromised
the change of class. We need therefore to exit the while cycle.

6. If we exit the cycle we return the new explanation E′ = E0 of reduced size only
if the decrease in size is high enough. That is when size(E′) ≤ zmax where
zmax is a user-defined parameter.

After Algorithm 2, we obtain the final set of explanations E′ that will be used
for Rivelo visualization. We list here three considerations regarding our result.

• Each explanation is as small as possible. We do not want features that are
irrelevant to the prediction score that were added just to not get stuck in
Algorithm 1. Those features were removed from the explanations in Algorithm
2.

• Each explanation size does not excess the user desired size zmax. Long ex-
planation are not practicable since they should usually point directly to few
features that are the key for that prediction outcome.

• We increased the final number of explanations as we could produce more
explanations than the original algorithm by Martens and Provost [19]. This is
extremely desired since the more explanation we have, the more useful will
be Rivelo’s interactive visualization. This can be measured by checking the
percentage of explained instances in the test set over their the total number. In
Chapter 7 we will see an exact scenario for this increase in number of explained
instances.
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Algorithm 1: Explanation Computation
Input: {xp

i ∈ {0, 1} i = 1, .., n}
D = {i : xi = 1}
E0

0 = {∅}
c0 = c = CM (D)
k = 0
Output: E
while ck = c or size(D/Ek

0 ) 6= 0 do
for i ∈ D/Ek

0 do
Ek

i = Ek
0 ∪ {i}

∆k
i f = f(xD/Ek

i
)− f(xD/Ek

0
)

end
if c = c1 then

i∗ = arg min
i

∆k
i f

if ∆k
i∗f > 0 then
break

end
end
if c = c2 then

i∗ = arg max
i

∆k
i f

if ∆k
i∗f < 0 then
break

end
end
if ∆k

i∗f = 0 then
i∗ = Random pick({ i | ∆k

i f = 0 })
end
Ek+1

0 = Ek
i∗

ck+1 = CM (D/Ek+1
0 )

k = k + 1
end
return E = Ek

0
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Algorithm 2: Explanation Postprocessing
Input: E0

0 = E
D = {i : xi = 1}
ĉ0 = ĉ = CM (D/E)
c = CM (D)
k = 0
Output: E′

while True do
for j ∈ Ek

0 do
Ek

j = Ek
0 /{j}

∆k
j f = f(xD/Ek

j
)− f(xD/Ek

0
)

end
if c = c1 then

j∗ = arg min
j

∆k
j f

end
if c = c2 then

j∗ = arg max
j

∆k
j f

end
if CM (D/Ek

j∗) = c then
break

end
else

Ek+1
0 = Ek

j∗

k = k + 1
end

end
if size(Ek

0 ) ≤ zmax then
return E′ = Ek

0
end
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Chapter 6

The Explanation Interface

We implemented the workflow (Figure 6.1), which we already briefly described in
the introduction (Chapter 1), in an interactive visual interface we call Rivelo1. The
application in its current implementation works exclusively with binary classifiers
and binary features and it assumes to receive as an input a data set and a trained
classifier. The data set must also contain ground truth information, that is, for
each data item what is the correct label the classifier is supposed to predict. Once
the system is launched, it automatically computes the following information: one
explanation for each data item; information about whether the prediction made by
the classifier is correct or incorrect (including false positives and false negatives); the
list of features, ranked according to how frequently they appear in the explanations.
For each feature, it also computes the ratio between positive and negative labels,
that is whether the feature tends to predict more positive or negative outcomes, and
the number of errors the classifier makes when predicting items whose explanations
contain that feature.

The user interface is made of the following main panels that reflect the steps of
the workflow (check labels in Figure 6.2):

• a feature list panel (Labels 1, 2) on the left, to show the list of ranked features;

• the explanations panel (Labels 3, 4, 5) next to it, to show the explanations
and data items containing the selected features;

• the descriptors panel (Label 6), containing a visual representation of the vectors
/ descriptors of the data items selected in the explanations panel;

• the raw data panel (Labels 7, 8) containing the raw data of selected vectors;

• the data stats panel (Figure 6.3) to understand aggregated statics regarding
the predictions and their explanations.

1Rivelo GitHub repository at: https://github.com/nyuvis/Rivelo.

https://github.com/nyuvis/Rivelo
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Figure 6.1. The Rivelo workflow involves the following user interactions: selection of
features, selection of the explanation, vectors inspection, and exploration of the raw
data. By switching back and forth between those steps, the user can freely change the
selections in a smooth and animated visualization. This explanation-driven workflow
can extract global behaviours of the model from patterns of local anomalies through
human interaction.

We now describe each panel and interaction with them in more details.
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The feature list panel displays the features computed in the beginning and
displays the following information in a list: the name of the feature, the ratio of
positive labels, the number of errors and the number of explanations it belongs
to. The ratio is displayed as a colored dot with shades that go from blue to red to
depict ratios between 0% and 100% true outcomes. The number of errors and the
number of explanations are depicted using horizontal bar charts. Users can sort the
list according to three main parameters: (1) number of explanations, which enables
them to focus on importance, that is, how many decisions the classifier actually
makes using that feature. (2) ratio of positive labels, which enables them to focus on
specific sets of decisions, and (3) number of errors, which enables them to focus on
correctness, that is, what features and instances create most of the problems.

Once one or more features are selected, the explanations panel displays all
explanations containing the selected features. The explanations are sorted according
to the number of explained instances. Each explanation has a group of colored cells
next to it ((4) in Figure 6.2) that represent one instance each. The color of the
cell indicates the value of its prediction (blue for positive and red for negative) and
different shades depending on the prediction value. When the cell represents an
instance that is classified incorrectly it is marked with a small cross, to indicate the
error ((5) in Figure 6.2).

By selecting an explanation or a single cell we can display the explained instances
in the descriptors panel. The panel displays a list of visual “descriptors”, each
depicting the vector of values used to represent an instance in the data set ((6) in
Figure 6.2). The descriptor is designed as follows. Each rectangle is split into as
many (thin) cells as the number of features in the data set. A cell is colored with a
dark shade (small vertical dark segments in the image) when a feature is present in
the instance and left empty when it is not present. A cell is colored in green when it
represents a feature contained in the explanation. The background color represent
the predicted label.

The main use of descriptors is to help the user visually assess the similarity
between the selected instances according to which (binary) features they contain.
When looking at the list of descriptors, one can at a glance learn how many features
are contained in a instance (that is, how many dark cells are in it) and how similar
the distribution of features is. Descriptors are particularly useful in the case of
instances with sparse features, that is, when the number of features present in a
given instance is much smaller than the number of those which are not present.

Next to the vectors panel, the raw data panel displays the actual raw data
corresponding to the selected descriptors. This is useful to create a “semantic
bridge” between the abstract representation used by the classifier and the descriptor
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Figure 6.3. The Data Stats panel shows statistics for explained instances. The top bar
shows the overall coverage while the bar below shows the distribution over the two labels.

representation, and the original data. In our example, the data shown is text from
a document collection but different representations can be used in this panel to
connect the abstract vector to the actual original data contained in the data set
(e.g., images). In this case we also highlight, in each text snippet, the words that
correspond to the features contained in the vector. Similar solutions can be imagined
for other data types.

One additional panel of the user interface is accessible on demand to obtain
aggregate statistics about the explanation process and the classifier (Figure 6.3). The
data stats panel provides several pieces of information including: percentage of
explained instances over the total number of instances, number of instances predicted
correctly and incorrectly for each label, number of features, number of data instances
as well as the prediction threshold used by the classifier to discriminate between
positive and negative cases. As you can see in Figure 6.3 two bars are displayed. In
the first bar the percentage of explained instances over the total number of instances
can be inspected. Below, in the second bar, it is possible to assess the real coverage
of explanations over positive and negative predictions. The different percentages are
shown by interacting with the different areas in the bar.

An extra visualization of Rivelo is the performance histogram, shown in Figure
6.4, which appears if requested. The performance histogram lets you perceive how
the threshold impacts the predicted labels. The x-axis of this plot represents the
prediction score decreasing from 1 to 0 on the right. Each bin represents the share
of instances predicted within a range. The horizontal line in the plot divides each
bin in two parts: above the line we have positive ground truth instances and below
negative ground truth instances. Predicted positive and negative instances will be
represented by blue and red bins respectively. From this visualization it is possible
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Figure 6.4. The performance histogram shows the distributions of prediction scores and
misclassifications. Each bin is relative to a different prediction score decreasing from 1
to 0 to the right. The threshold (in this case 0.6) is determined by the change of color
between bins: all blue bins represent positive predicted instances and all red bins negative
predicted instances. The horizontal line divides the bins by ground truth percentage. The
portion of a bin above the horizontal line is relative to positive ground truth instances,
below to negative ones. For example the first red bin to the left represents all instances
with prediction p : 0.5 < p ≤ 0.6. Being red, this bin represents negative predictions and
the portion above the horizontal line is relative to its false negatives, below the line to
its true negatives. In this case the portions of the bin related to misclassifications (false
negatives) is dangerously close to 50% of the bin, but this percentage will decrease by
moving to bins further away from the threshold.

to perceive a quick idea of instances distribution by prediction score and an overview
of misclassifications. Given the automatically computed optimal threshold, it is
possible to quickly compare distributions of ground truth labels, encoded by the
y-axis, with predicted labels, encoded with the color, for different prediction scores.
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Chapter 7

Use Case: Doctor reviews on
Yelp

In this chapter we present a use case based on the analysis of a text classifier used to
predict the rating a user will give to a doctor in Yelp, the popular reviews aggregator.
To generate the classifier, we used a collection of 5000 reviews submitted by Yelp
users. We first processed the collection using stemming and stop-word removal and
then created a binary feature for each term extracted, for a total of 2965 binary
features. We also created a label out of the rating field, grouping together reviews
with 1 or 2 stars for negative reviews and those with 4 and 5 stars for positive
reviews. This way we created 4356 binary vectors, one for each review, of which 3334
( 76%) represent positive reviews and the remaining ( 24%) negative reviews. Then,
we trained a random forest model [5] based on the data and labels just described and
obtained a classifier with an area under the ROC curve score equal to AUC = 0.875.
We exported the scorer function of the model, the predicted label and the ground
truth label for each review of test data to generate the input for Rivelo. We also
computed the optimal threshold for the scorer function 0.6. The value is closer to 1
to compensate for the high amount of positive reviews in the data set.

After the first computation of explanations, which took around 1.5 hours to
complete, we explained 64% of the reviews with explanations of length up to 5 words.
By post-processing, which took about 1.5 hours as well, we were able to reduce the
size of 34.5% of the 1563 explanations that were longer than 5 features. This way we
increased the number of explained instances by 542, explaining 76.52% of instances
of our test set. By compacting long explanations in the post-processing, we are
able to explain 12% more instances than the original algorithm by Martens and
Provost [19]. This statistic results are visualized in the data stats panel of Figure
6.3, while Figure 6.2 shows the results obtained by the entire procedure.

Looking at the set of features sorted by frequency one can readily see that most
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Figure 7.1. Reported in this figure we have the top 10 most used features used in
explanations for the Yelp case study. Most of the reviews in the data-set are positive,
therefore the majority of the computed explanation are relative to positive predictions.
This is the reason why all of those most frequent explanation terms have a positive ratio
(blue label).

of the model decisions take place to predict the positive label and that many of the
words used capture adjectives that represent positive sentiments such as, “friendly”,
“love” and “recommend”, which have been labeled correctly as positive words (Figure
7.1). By taking a closer look we also see less obvious words, that do not seem to
have straightforward role in the classification, even if they are used more than others
in explanations. For example, the word “Dr.” is used frequently to explain positive
reviews. Using the error bar indicator next to “Dr.” (Figure 7.1), we can also see
that the feature has a very low false positive rate.

When we select this feature, the interface shows all the explanations and instances
containing it. We can then see that the large majority of cases is predicted by the
word “Dr.” alone or a combination of this word with some other positive property
such as “great” and “recommend”. We can also see that some of the instances are
classified incorrectly, especially those in which the explanation contains exclusively
the word “Dr.”. To better understand this trend, we inspect several raw text
documents associated to these instances and figure out that reviewers tend to use
the name of the doctor preceded by the word “Dr.” whenever they have to say
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Figure 7.2. This figure shows some false positive explained by the explanation “Dr.”. As
you can read, those are negative reviews that use the title “Dr.” without mentioning
the doctor name, making an exception to the rule and confusing the machine learning
classifier.

something positive, but they tend to refer to the practitioner as “the doctor”, using
a more generic terminology, when writing a negative review.

Through this inspection, we can also better understand how the few false positives
explained by “Dr.” happen. When we look at the raw text of selected false positive
cases, displayed in Figure 7.2, we see that most of them represent rare cases where
the patient is using the word “Dr.” without using the doctor name (e.g. “Dr. is very
nice but the staff is rude.”). The model therefore tends to be confused by outlier
cases in which a contradiction of the rule is present.

Another interesting word is the word “call”, which, as shown in the figure, tends
to predict negative reviews, even though with a somewhat high error rate. While not
immediately obvious why this word leads to negative reviews, we figure out, through
the visual inspection enabled by our application, that reviewers tend to mention
cases in which they have called the doctor’s office and received poor assistance
(Figure 7.3). A similar case is the feature “dentist” (shown in 7.4), which also tends
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to predict negative reviews. The feature however has also a somewhat higher error
rate which means many positive reviews are misclassified as negative. Through
closer inspection, we realize that the classifier is not able to disambiguate cases in
which the word “dentist” is used in a positive context such as “fantastic dentist”
(Figure 7.4).

The most common words in explanations with hundreds of associated documents
are “great” and “recommend”, top explanation term in Figure 7.1. The majority of
those documents are true positive, but we can still find and select the few false positive
the model generates. Selecting all the misclassified positive reviews containing “great”
we spot an interesting problem: some of the reviewers sometime use the word “great”
in a sarcastic way, making the detection of a negative connotation too hard for
the classifier. An example of a miscalssified sarcastic negative review is shown in
Figure 7.5. Similarly, we also notice that the word “recommend” is sometime used
in conjunction with a negation, that is, “not recommend”, making it once again too
hard for the classifier to make the correct prediction with its current configuration.
Some example of these cases are shown in Figure 7.6. An interesting aspect of this
last case is that the manual inspection of misclassified instances can lead to ideas on
how the classifier could be improved. For instance, in this last case equipping the
classifier with means to detect negation may lead to improved performance.
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Figure 7.3. In this figure some of the true negative reviews explained by “call” are listed.
By reading you see how the reviewers are complaining about issues they had during the
doctor phone service.
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Figure 7.4. This figure shows false negative reviews explained by “dentist”. It is unclear
why the classifier used the term “dentist” to predict those negative labels and thanks to
Rivelo we are able to recognize the classifier mistake. First “dentist” is incorrectly used
to explain many false negatives, as shown in the error bar of which a great portion is
black. Second those false negatives reported in figure are clearly positive reviews with
strong positive terms like “awesome”, “best” and “fantastic”. From this observation a
machine learning developer could investigate what went wrong in the prediction of those
instances, which should have easily been predicted positive.

Figure 7.5. This figure shows an interesting case that Rivelo was able to point out. The
shown review explained by “great” is false positive because the reviewer used “great” in
a sarcastic way, which the classifier was not able to detect.
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Figure 7.6. Rivelo is able to point problems by showing interesting prediction cases,
prompting ideas to improve the classifier. For example in this figure we can read some
false positive explained by “recommend”. The classifier missclassified those reviews
because it was not able to detect negation in those sentences. This way Rivelo is
suggesting to improve the classifier with negation detection.
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Chapter 8

User Study

In this chapter we describe a small user study on the visual interface of Rivelo.
Given the scarcity of resources, this user study does not present complete results.
Therefore the outcome is just indicative, aiming at pointing out evidence that Rivelo
can be used and understood by different users. The process followed in this study
comprehended the following steps: collecting demographic information of the users
(5 minutes), explaining how Rivelo works (10 minutes), training the users with a
supervised practical tutorial on the interface (15 minutes), leaving the users to
freely interact with the tool (20 minutes), making a quick interview asking questions
regarding their experience with the tool (15 minutes).

8.1 Recruitment and Setting

Participants have been recruited from graduate students of Sapienza University of
Rome, of which around 40% is not familiar with machine learning and the other
portion is a becoming expert. A total of 14 individuals have been recruited (9 males,
5 females) through personal messages. The average age is 24.78 years. The studies
always occurred on the same system with a 15-inch screen with full-HD resolution
(1920x1080).

8.2 The Procedure

The user study starts by collecting general demographic information such as gender,
age, education level and country of origin. After that the author gives an explanation
of how Rivelo works. Rivelo is loaded with the Yelp data-set we have already seen
in Chapter 7. Then the author gives also a quick live demonstration by interacting
with the interface. After the demo is over, the participant is asked to try the tool
and ask questions. When the training has ended the author leaves the room to avoid
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distractions and biases. The subject has 20 minutes to find 5 observations on the
classifiers global behaviours through interaction with Rivelo. When the time is over
an interview takes place to discover what the user was able to find. The entire time
length of the user study is of about 1 hour.

8.3 Results

The results from the final interviews with the user study participants are satisfying.
Most of the subjects were able to find not only the classifier behaviours already
mentioned in Chapter 7, but also some decision patterns the author was not able to
notice.

Most of the subjects correctly start by inspecting terms from the features panel
that do not give an immediate reason to why they were used by the explanations.
Then they select an explanation relative to many documents and read through the
raw data in search for recurrent situations which could describe a global behaviour
of the classifier.

In Figure 8.2 we see a grid displaying the terms that were most selected by the
user study participants. Most of those selected terms are verbs or nouns and not
adjectives. Some examples of adjectives used in explanations are “great”, “friendly”,
“rude” or “horrible”, which all have a comprehensible role in the classifier. The user
study participants were more focused in inspecting unexpected explanation terms
such as: “money”, “Dr.”, “desk”, “staff ”, “doctor” and “day”. Those terms, mostly
nouns, were apparently used by the classifier, but it is not directly clear on why they
are meaningful for a classification. Therefore users check if the classifier used those
terms correctly or if there is a recurrent mistake in those classification.

Except the cases we have already seen in Chapter 7, we can add some new
observations made by the users. Some of the users noticed that the term “fine” is
used unexpectedly to identify negative reviews. By reading through the raw data,
participants realized that “fine” is used in sentences describing something that was
“just fine”, while if the reviewer wants to be positive about some service she would
use the adjective “great”. Another example regards the use of two apparently similar
features: “bill” and “price”. From inspecting the features panel, a user was interested
in those two features because, even though they are semantically similar, the model
is using “bill” to identify negative reviews while “price” to identify positive ones.
From inspecting the raw data panel, the user realized that generally people use
“expensive bill” when they consider the doctor service expensive and “low price”
otherwise.

In Figure 8.3 we can see another heatmap describing the model bugs detected
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by the user study participants. Each column of the matrix representation is relative
to a bug category which we will describe now from the most detected to the least
detected.

• Syntax detection:
The most common observation regarding the model regards the syntax detec-
tion. That is the ability of the model to understand the logic structure within
the text data. Even to participants not familiar with machine learning, Rivelo
was easily showing this lack of the model in detecting the role of a term in
its context. That derives from the text data representation in bags of words,
which take into account just which words are present but not where in the
sentence are placed. The more expert participants suggested that the model
should use natural language processing (NLP) techniques.

• Need for n-grams features:
In checking out terms like “desk”, “cover”, “doctor” and other noun features,
the users see that the greatest amount of missclassifications is relative to the
explanation containing just that single term (for example the explanation “desk”
or “cover” in Figure 8.1). Where instead one of those terms is together with
another different term, for example “rude” + “desk” or “insurance” + “cover”,
the amount of mistaken predictions decreases. To overcome this problem,
without changing the approach given by the bag of words representation,
several participants suggested the use of n-grams features. That is features
representing not just single terms but phrases. This way it is possible to
understand for example to what noun an adjective is related to. For example
a 2-gram feature might be “great doctor” which is quite different from “great
pain”.

• Need for capitalization of features:
By inspecting the raw data panel, the user study participants noticed that
oftentimes reviewers tend to write in caps when they are upset or enthusiastic
about something. Therefore they suggested that the model should differentiate
uppercase features, rather than merging them with the lowercase ones.

• Negation detection:
This case has been already covered by the Use Case in Chapter 7 and it regards
the ability of the model to detect negation within a sentence. For example by
inspecting false positives explained by “recommend”, participants were able to
find many case in which the reviewers wrote “I do not recommend”.

• Overfitting the train set:
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The participants with more knowledge of machine learning were able to find
features used by the model that were clearly a symptom of overfitting the
train set. That is features linked to names of doctors like “Kaiser”, “April”
or “Lake”. Apparently those doctors had many reviews with same label in the
train set and as a consequence the model used their names to identify positive
or negative reviews.

• Stemming bugs:
Some of the users localized problems in the stemming of the model. This
technique basically is the removal of the suffix and prefix of words. This is done
in order to recognize the same word when it appears in different conjugation or
forms. In certain cases the stemming algorithm might make mistakes and this is
exactly what users could detect. For example a negative word like “careless” is
transformed into “care”, a positive word. By showing false positives explained
by “care”, Rivelo points the bug to the user showing “careless” in the raw
data. Theoretically the user could fix the stemming bug and reinspect the new
predictions with Rivelo, until no cases like this one are present.

• Punctuation detection:
In some cases punctuation is useful to understand emphasis given by the
reviewers. For example if a reviewers writes “great!!!” instead of just “great.”,
the model should detect this and give an even higher positive prediction. Three
of the participants noticed that the model is not able to detect such emphasis
and that “!!!” is used as a separate features confusing even more the model.

• Predictions for long reviews:
Oftentimes reviews are really long, containing a great amount of features
and complicated statements. Participants were able to notice that many
miscalssifications are linked to those reviews, where the model is not able
to understand the prolix argument. Furthermore two users noticed that the
model explanations for such long reviews were oftentimes made of a single
feature. The users linked this phenomenon to the model inaccuracy.

• Time dependency:
An interesting observation by two users is related to the time context in which
features are used. For example features like “problem” and “pain” if used with
a past verb they are positive features (e.g. “I had pain, now it’s gone”), while
if used with a present verb they become negative features (e.g. “I still have
pain”). Instead features like “happy” and “love” have positive meaning in the
present while negative one in the past (e.g. “I used to love this place” vs “I
love this place”). User study participants noticed that the underlying model
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is not able to detect time dependency of a used features and this is source of
misclassifications.

• Sarcasm detection:
Just one of the participant found a case of undetected sarcasm, of which we
have already talked about in the Use Case of Chapter 7.

We have seen a practical example of Rivelo users not just being able to find the
global behaviours shown in the use case of Chapter 7, but also to add new interesting
observations on the Yelp use case. Therefore we concluded the user study gave a
positive result. Despite this, many are the upgrades we still need to make to Rivelo.
In the next chapter we will see some of those possible improvements.
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Figure 8.1. The participants of the user study, while selecting terms with an high error
rate (black and white bar), noticed that the higher amount of misclassifications often is
relative to the explanation with a single noun or verb. They were able to detect this
from the visualization in the explanations panel, where misclassifications are depicted as
little cells with a cross symbol on top. In the figure we can see this for the terms “cover”
and “desk”. This describes an overall behaviour of the classifier: oftentimes the classifier
better detects, within the review context, the role of single nouns or verbs when it is
also present another meaningful term. For example the explanation “desk” is relative
to many misclassifications, while the explanation “desk” + “rude” relates to all true
negatives.
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Figure 8.3. In this figure we display all the category bugs detected by the 12 participants.
Users are sorted on rows from the one detecting more bug types to the one detecting less
bug types, while columns are representing the bug type sorted from the most detected
to the least detected. A purple cell shows when a given row-user is detecting that
column-bug type. The bug categories are described in detail in Section 8.3.
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Chapter 9

Discussion and Future Works

Our use case shows how the proposed solution can help figure out major decisions
made by the classifier, spot potential issues and possibly also help derive insights on
how problems can be solved. The system, however has, in its current implementation,
a number of relevant limitations, that we discuss below.

First, Rivelo works exclusively with binary classification and binary feature sets.
While this specific configuration covers a large set of relevant cases (e.g., we tested
the system with a medical data set describing drugs administered to patients in
emergency rooms to predict admissions), many other relevant cases are not covered;
notably cases in which features or the predicted outcome are not binary. To solve
this problem we will need to develop explanations and design visual representations
able to handle the more general case of non-binary features and multiclass outcomes.
While an extension of the technique to multiclass classification is not trivial extending
to numerical input data could be achieved by adopting techniques like those proposed
by Prospector [15] and LIME [25].

Second, the descriptors we use to compare selected instances in terms of their
similarity do not lead to an optimal solution. Ideally, we would like to more directly
explain what makes instances with similar configurations have differing outcomes
and vice-versa. One potential solution we will investigate is to train local models
to rank the features in the descriptors in ways that highlight the differences that
lead to different outcomes (e.g., instances with the same explanation but different
outcome). Another possible extension is to provide a scatter-plot visualization using
a projection of the selected instances. This task raises various problems. One of
those is visually representing a great quantity of instances without overwhelming
the user. In the dense visualization of instances the user would need to differentiate
them by number of features, length of explanations, prediction value, predicted
label, ground truth label and more properties. A solution might be a technique
similar to the technique used by Piava et al. [22]. To better compare a large number
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of instances we could use a projection that uses dimensionality reduction, as for
example t-SNE [32]. This way we could visually correlate instance similarities and
outcomes. Multidimensional projections however often suffer of several distortion
effects that reduce the trustworthiness of the visualization. In addition, they do not
provide a direct relationship between the original data space and the trends observed
in the projections, making it harder to understand the root causes of observed issues.
A possible similarity metric could be the Jaccard distance which uses the ratio of
the vector intersection over their union. At the same time the visualization could
branch instances with similar score together.

Another important limitation is our focus on understanding one single model at a
time. Often important insights can be generated by comparing multiple models. We
plan to explore how our technique can be extended to multiple model comparisons
and see what advantages it may provide. That is challenging because it will require
to deal with multiple explanations for each instance. In fact, given a single instance,
we would have a different explanation for each model we want to compare.

Finally we tailored Rivelo on an explantaion-driven approach. However expla-
nations corresponding to only single instances occur quite often. This reduces the
effectiveness of aggregation. Therefore a future work might be to add an optional
instance-driven approach. By selecting a feature in a first panel the tool would dis-
play a single aggregation of all instances containing that feature in their explanation,
sorting them by different properties and not just by explanation. Furthermore the
user would also be able to select and compare instances with different explanations.
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Chapter 10

Conclusion

In this thesis, we have shown how a visual explanation workflow can be used to
help people make sense of and assess a classifier using a black-box approach based
on instance-level explanations and interactive visual interfaces. Our system called
Rivelo aggregates instances using explanations and provides a set of interactions
and visual means to navigate and interpret them. The work has not been validated
with a complete and professional user study, given the lack of resources. Further
investigation is needed to fully understand the effectiveness of our approach, potential
limitations and the extent to which it helps analysts reach useful and accurate
conclusions. For this reason, we intend to evaluate the system in the near future
through a series of detailed user studies involving analysts and domain experts with
a range of expertise in machine learning and in the application domain.

By looking at all these possible future works, we see how Rivelo gave us the
opportunity to dive in this expanding field. As the demand for transparency of
model decisions grows, more techniques are needed to build trust and confidence for
its users. We presented a work-flow enabling domain experts and machine learning
experts to gain insights into the decision making process of complex models. Even
though there is room for improvements we showed that visual analytics can be used
to explore explanations effectively. By proposing this explanation-driven approach,
we showed how machine learning explanations are useful in visual analytics.
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